Elliptic Integrable Systems Elliptic Integrable Systems of Calogero-moser Type: Some New Results on Joint Eigenfunctions

نویسندگان

  • SIMON N. M. RUIJSENAARS
  • S. N. M. Ruijsenaars
چکیده

We present results on special eigenfunctions for differences of elliptic CalogeroMoser type Hamiltonians. We show that these results have a bearing on the existence of joint Hilbert space eigenfunctions for the commuting Hamiltonians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large N Limit of Integrable Models

We consider a large N limit of the Hitchin type integrable systems. The first system is the elliptic rotator on GLN that corresponds to the Higgs bundle of degree one over an elliptic curve with a marked point. This system is gauge equivalent to the N -body elliptic Calogero-Moser system, that is derived from the Higgs bundle of degree zero over the same curve. The large N limit of the former s...

متن کامل

On Algebraically Integrable Differential Operators on an Elliptic Curve

We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several...

متن کامل

Geometric construction of elliptic integrable systems and N = 1∗ superpotentials

We show how the elliptic Calogero-Moser integrable systems arise from a symplectic quotient construction, generalising the construction for AN−1 by Gorsky and Nekrasov to other algebras. This clarifies the role of (twisted) affine Kac-Moody algebras in elliptic Calogero-Moser systems and allows for a natural geometric construction of Lax operators for these systems. We elaborate on the connecti...

متن کامل

Hitchin Systems - symplectic maps and two - dimensional version

The aim of this paper is two fold. First, we define symplectic maps between Hitchin systems related to holomorphic bundles of different degrees. It allows to construct the Bäcklund transformations in the Hitchin systems defined over Riemann curves with marked points. We apply the general scheme to the elliptic Calogero-Moser (CM) system and construct the symplectic map to an integrable SL(N, C)...

متن کامل

Geometric Construction of Elliptic Integrable Systems and N = 1

We show how the elliptic Calogero-Moser integrable systems arise from a symplectic quotient construction, generalising the construction for AN−1 by Gorsky and Nekrasov to other algebras. This clarifies the role of (twisted) affine Kac-Moody algebras in elliptic CalogeroMoser systems and allows for a natural geometric construction of Lax operators for these systems. We elaborate on the connectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005